Ko et al. Journal of Brachial Plexus and Peripheral Nerve Injury 2011, 6:8

http://www.jbppni.com/content/6/1/8 JOURNAL OF BRACHIAL PLEXUS AND

PERIPHERAL NERVE INJURY

RESEARCH ARTICLE Open Access

A quantitative evaluation of gross versus
histologic neuroma formation in a rabbit forelimb
amputation model: potential implications for the
operative treatment and study of neuromas

Jason H Ko', Peter S Kim', Kristina D O'Shaughnessy', Xianzhong Ding?, Todd A Kuiken® and
Gregory A Dumanian'®’

Abstract

Background: Surgical treatment of neuromas involves excision of neuromas proximally to the level of grossly
“normal” fascicles; however, proximal changes at the axonal level may have both functional and therapeutic
implications with regard to amputated nerves. In order to better understand the retrograde “zone of injury” that
occurs after nerve transection, we investigated the gross and histologic changes in transected nerves using a
rabbit forelimb amputation model.

Methods: Four New Zealand White rabbits underwent a forelimb amputation with transection and preservation of
the median, radial, and ulnar nerves. After 8 weeks, serial sections of the amputated nerves were then obtained in
a distal-to-proximal direction toward the brachial plexus. Quantitative histomorphometric analysis was performed
on all nerve specimens.

Results: All nerves demonstrated statistically significant increases in nerve cross-sectional area between treatment
and control limbs at the distal nerve end, but these differences were not observed 10 mm more proximal to the
neuroma bulb. At the axonal level, an increased number of myelinated fibers were seen at the distal end of all
amputated nerves. The number of myelinated fibers progressively decreased in proximal sections, normalizing at 15
mm proximally, or the level of the brachial plexus. The cross-sectional area of myelinated fibers was significantly
decreased in all sections of the treatment nerves, indicating that atrophic axonal changes proceed proximally at
least to the level of the brachial plexus.

Conclusions: Morphologic changes at the axonal level extend beyond the region of gross neuroma formation in a
distal-to-proximal fashion after nerve transection. This discrepancy between gross and histologic neuromas signifies
the need for improved standardization among neuroma models, while also providing a fresh perspective on how
we should view neuromas during peripheral nerve surgery.
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Background

When a peripheral nerve is transected, the distal nerve
segment undergoes Wallerian degeneration and, without
coaptation to proximal nerve tissue, eventually disappears
[1]. The proximal nerve stump, in contradistinction, has
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the ability to regenerate and send axon sprouts into the
distal nerve segment, potentially proceeding to the target
organs [2,3]. However, when regenerating axons fail to
reach the distal segment, a neuroma forms, and axons
cease to grow [4]. On a microscopic level, these neuro-
mas consist of disorganized, chaotic myelinated axons
encased in significant connective tissue stroma [5], and
they are frequently sensitive to pressure, causing a classic
focal neuroma pain [6,7]. Neuroma pain can be both
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physically and psychologically disabling and is often diffi-
cult to treat [8,9]. Numerous surgical techniques have
been proposed for the prevention and treatment of neu-
romas, including simple ligation [10,11]; capping the
nerve stump with various materials [12-15]; translocation
into nerve tissue through end-to-side or centro-central
coaptation [16-18]; and transposition of the nerve ending
into bone [8,19], fat [20,21], muscle [6,22-24], and, more
recently, vein [25-28]. As implied by the large number of
techniques to prevent and treat neuromas, there is no
consensus yet on which method is most effective.
Regardless of technique, however, the fundamental prin-
ciple of neuroma surgery involves excising the injured
nerve segment proximally to the level of grossly normal
fascicles. Yet the zone of injury of a peripheral nerve end-
ing in a classic neuroma is not defined, and understand-
ing the microanatomy of these situations is important
both in clinical peripheral nerve surgery, as well as for
the standardization of all animal nerve models that
attempt to investigate neuroma treatments.

Targeted reinnervation is a revolutionary strategy per-
formed in upper extremity amputees where the stumps
of amputated nerves of the brachial plexus are trans-
ferred to denervated, otherwise functionless, remnant
muscles in the shoulder, chest, and/or proximal arm, in
order to achieve a functioning neural-machine interface
that allows amputees to voluntarily control motorized
prostheses just as they would control their native limbs
[29-34]. In order to further investigate targeted reinner-
vation at a level just distal to the brachial plexus, we
developed a novel rabbit forelimb amputation model
that is a well-tolerated and reproducible quantitative
model of end-neuroma formation [35]. An amputation
model was created to better simulate the clinical sce-
nario of limb amputation, as well as to increase the
number of neuromas created per animal (and thereby
decrease the total number of animals sacrificed), and the
amputation was performed in the proximal forelimb in
order to mimic the clinical scenario that is often
encountered in targeted reinnervation. Although pre-
vious studies have examined the retrograde axonal
changes that occur after nerve transaction [36-42], there
is sparse data regarding the distal-to-proximal histologic
changes that occur in the proximal nerve stump, as they
relate to gross nerve appearance, after amputation injury
at the brachial plexus level.

Materials and methods

This study was approved by the Northwestern Univer-
sity Institutional Animal Care and Use Committee
(IACUCQ) prior to its initiation. Four 6-month old (2.5-
3.5 kg) female New Zealand White rabbits (Covance
Inc., Princeton, NJ) were acquired and single-housed
with food and water ad libitum.
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Operative Technique

The pre- and post-operative care of the animals were
outlined in detail in a previous study, as was the surgical
technique [35]. Briefly, under sterile conditions, an ellip-
tical incision was made around the left proximal fore-
limb, and the distal skin overlying the forelimb was
elevated in a circumferential, de-gloving fashion. The
nervous structures—with special attention directed to the
median, radial, and ulnar nerves—were exposed and
identified as they exited the brachial plexus, and the
median, radial, and ulnar nerves were each transected 2
cm distal to where they branched off of the brachial
plexus and loosely sutured to the anterolateral aspect of
the normally innervated pectoralis superficialis transver-
sus muscle using 7-0 polypropylene suture (Prolene
suture, Ethicon Inc., Somerville, NJ) (Figure 1). All mus-
cles and tendons were disinserted from the humerus,
and a shoulder disarticulation amputation was per-
formed. The remaining muscles were sutured together
over the glenoid fossa and any remaining bony promi-
nences using 4-0 polyglactin (Vicryl suture, Ethicon),
and the skin incision was closed in a running subcuticu-
lar fashion using 4-0 polyglactin suture. Following
recovery, the rabbits were inspected daily for abnormal
activity, evidence of pain, and post-operative wound
complications.

AR

Figure 1 The amputated stumps of the median (left), radial
(center), and ulnar (right) nerves are loosely sutured to the
pectoralis superficialis transversus using 7-0 polypropylene
suture to ease identification and location of the neuromas at

the time of harvest.
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Tissue Harvest and Preparation
Eight weeks post-amputation, the rabbits were eutha-
nized, and the original surgical incision was re-opened,
with the median, radial, and ulnar neuromas dissected
out and brought to length. After excising the distal 5
mm of neuroma/nerve, which is typically performed in
targeted reinnervation procedures, in addition to other
nerve transfer and neuroma procedures, 7-0 polypropy-
lene sutures were used to mark the remaining distal seg-
ment of each nerve, in addition to 5 mm proximally, 10
mm proximally, and 15 mm proximally toward their
branch points off the brachial plexus (Figure 2). Serial
nerve sections were harvested at each location as indi-
cated by the suture markings. In the contralateral limb,
serial nerve sections were obtained from the median,
radial, and ulnar nerves at corresponding lengths—distal
end, 5 mm proximally, 10 mm proximally, and 15 mm
proximally—relative to their branch points off the bra-
chial plexus to serve as controls. In all animals, after
excising the distal 5 mm of nerve tissue, 20 mm proxi-
mally represented the level of the brachial plexus.
Harvested nerve specimens (n = 96 total) were fixed
in 4% EM grade glutaraldehyde (Polysciences Inc.,
Warrington, PA) at 4°C, post-fixed with 2% osmium
tetroxide (Polysciences) and serially dehydrated in
ethanol. Specimens were embedded in Poly/Bed® 812
BDMA (Polysciences) and cut into 1-pm cross-sections
with a Leica Ultracut UCT ultramicrotome (Leica

Figure 2 Six to 8 weeks post-amputation, after the distal 5 mm
of the median (top), radial (center), and ulnar (bottom)
neuromas was excised, 7-0 polypropylene sutures were placed
at the distal segment, and at 5, 10, and 15 mm proximally
toward their branch points off the brachial plexus.
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Microsystems Ltd., Wetzlar, Germany). Sections were
then stained with 1% toluidine blue, and mounted and
cover-slipped for imaging.

Histomorphometric Analysis

A Nikon DS-5M-U1 (Nikon Instruments Inc., Melville,
NY) digitizing camera was mounted onto a Nikon
Eclipse 50i (Nikon) microscope with a manually con-
trolled stage. Nikon NIS-Elements BR 2.3 (Nikon) ima-
ging software was wused to perform nerve
histomorphometric analysis of all slides. Using a semi-
automated technique, characterized by dynamic thresh-
olding and manual fiber elimination, [43,44] each nerve
was analyzed to determine the nerve cross-sectional
area, the myelinated axon count in each nerve cross-sec-
tion, and the cross-sectional areas of the axons including
their myelin sheaths. In order to prevent grading bias,
prepared slides from amputated and control sides were
randomly assigned numbers for analysis with their iden-
tification marks covered.

Statistical Analysis

Control nerve sections at each location (distal end, 5
mm proximally, 10 mm proximally, and 15 mm proxi-
mally) were grouped according to nerve (median, radial,
and ulnar nerves), and an analysis of variance (ANOVA)
with Bonferroni post-test analysis was performed for
each of the three following histomorphometric para-
meters: 1) nerve cross-sectional area; 2) myelinated axon
count; and 3) myelinated axon cross-sectional area.
There were no significant differences amongst nerve
type for each variable, so the treatment nerves for the
median, radial, and ulnar nerves at each location were
compared to grouped control nerves for each nerve type
using the two-tailed Student’s ¢-test to analyze nerve
cross-sectional area, myelinated axon count, and myeli-
nated cross-sectional area. A p-value < 0.05 was consid-
ered statistically significant.

Results

Gross examination of the amputated nerve stumps
revealed traumatic neuroma tissue that was enlarged
with nodular fusiform formation at the distal end of
each of the transected nerves. Fibrosis was also present,
resulting in adhesions to the surrounding tissue. The
aforementioned macroscopic findings, especially the
nerve calibers, normalized by 5 mm proximally in all of
the transected nerves, and sectioning of the nerves
demonstrated grossly normal fascicles 5 mm proximal
to the distal end. Microscopically, the nerve architecture
at the amputation site was disorganized with extensive
nerve fiber regeneration and disorientation. Uneven dis-
tribution of regenerative nerve fibers was observed with
variation of axonal bundle density from area to area,
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and marked variation in shape and size of axonal bun-
dles was also observed. Dramatic fibrosis was seen
between the regenerative nerve bundles (Figure 3).
Under higher microscopic magnification, interstitial
stroma between regenerative axonal bundles was fibrotic
with collagen deposition. Smaller, disorganized myeli-
nated fibers, with qualitatively increased amounts of
myelin infolding, crenation, and debris were seen at the
distal end of each proximal nerve stump. In the ampu-
tated nerve stumps, axonal regeneration, axonal bundle
disorganization and disorientation, and interstitial fibro-
sis progressively normalized in a distal-to-proximal fash-
ion but are still present even at a distance of 15 mm
proximal to the distal neuroma end when compared to
control nerve specimens. The aforementioned qualitative
observations were confirmed by histomorphometric
analysis.

Nerve Cross-Sectional Area

As Figure 4 demonstrates, the mean cross-sectional area
of the median nerve at the distal end for the amputation
group had a 1.7-fold increase compared to that for the
control group (p = 0.001), and the median nerve seg-
ments at 5 mm were 1.4 times larger than correspond-
ing controls (p = 0.04). Of note, the median nerve
sample 15 mm proximally demonstrated a 33% decrease
in mean cross-sectional area for the amputation group
compared to the control group (p = 0.03). For the radial
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nerve, the mean cross-sectional area at the distal end
was 3.2 times greater in the amputation group than in
the control group (p < 0.0001), and at 5 mm proximally,
the cross-sectional area for the amputated radial nerve
was significantly greater (by a factor of 1.7) compared to
control (p < 0.0001). The amputation group demon-
strated a 2.5-fold increase in cross-sectional area of the
ulnar nerve at the distal end compared to control (p <
0.0001). Once again, the amputated group had a larger
mean cross-sectional area at 5 mm proximally, but this
was not statistically different than the control group.

Myelinated Axon Count

As demonstrated in Figure 5, the myelinated axon count
at the distal end of the median nerve demonstrated a
2.4-fold increase in the amputation group when com-
pared to the control group (p < 0.0001). Five mm proxi-
mally, the axon counts were 1.9 times higher in the
amputated nerves (p = 0.0003), and 10 mm proximally,
the axon counts were 1.4 times higher in the amputated
nerves (p = 0.004). The mean myelinated axon count for
the radial nerve was 2.4 times higher at the distal end in
the amputation group (p < 0.0001); 1.7 times higher 5
mm proximally in the amputation group (p < 0.0001);
and 1.4 times higher 10 mm proximally in the amputa-
tion group (p = 0.001). The ulnar nerve demonstrated
the same trend with an increased myelinated axon
count by a factor of 2.8 for the amputation group at the

Median

Radial

Ulnar

fibers with no noticeable myelin debris.

Figure 3 (Above) Median nerve. (Center) Radial nerve. (Below) Ulnar nerve with toluidine blue staining at 400x magnification. (First column)
Smaller, disorganized myelinated fibers, with qualitatively increased amounts of myelin infolding, crenation, and debris are seen at the distal end
of each proximal nerve stump. Regenerative clusters with axon sprouting are more prevalent at the distal ends, as is the amount of connective
tissue stroma. (Second, third, and fourth columns) The myelinated fibers become progressively more organized and larger at 5, 10, and 15 mm
proximally, although myelin debris and crenation are still noted. (Fifth column) The control nerves demonstrate organized, circular, and larger
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Figure 4 The nerve cross-sectional area of the median, radial, and ulnar nerves compared to control nerves at the time of harvest (6-

Bl Amputation
Il Control
* p<0.05
** p<0.01
*** p<0.001
*** p<0.0001

Ulnar Nerve

distal end (p < 0.0001) and a 1.8-fold increase in the
amputation group 5 mm proximally (p = 0.005). There
was no significant difference in the axon counts for any
amputated nerve groups 15 mm proximally compared to
the normal control group.

Myelinated Axon Cross-Sectional Area

Figure 6 shows significant decreases in mean myelinated
axon cross-sectional area for the median, radial, and
ulnar nerves in amputation versus control groups at all
nerve distances (p < 0.0001 for distal end, 5, 10, and 15
mm proximally). The average cross-sectional areas were
smallest near the neuroma, and axon cross-sectional
areas increased progressively as the nerve was sectioned
more proximally. However, the myelinated axon area
did not normalize to the control group values. This pat-
tern was also consistently demonstrated in the radial
nerve (p < 0.0001 for distal end, 5, 10, and 15 mm

proximally) and in the ulnar nerve (p < 0.0001 for distal
end, 5, 10, and 15 mm group).

Discussion
Inspired by findings both in the laboratory and in the
operating room, this study was undertaken to better
understand the microanatomic changes that occur to
the proximal end of a chronically transected peripheral
nerve. First described by Waller in 1850 [1], the changes
that occur in the distal segment of a transected nerve
are accordingly referred to as Wallerian degeneration;
however, in addition to changes in the distal nerve seg-
ment, Waller also described the generation of neural tis-
sue from the proximal nerve, which was further
described and pioneered by Ramén y Cajal [2].

In the proximal nerve segment, a series of histologic
changes occur in a process referred to as the axon reac-
tion, retrograde effect, and/or traumatic degeneration,

Median Nerve Radial Nerve
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Figure 5 The myelinated axon count of the median, radial, and ulnar nerves compared to control nerves at the time of harvest (6-8
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amongst other names [45-47]. During the axon reaction,
according to Sunderland, anywhere from 17 to 94% of
nerve fibers die [48], mostly as a result of diminished
target-derived neurotrophic support [49,50]. In several
studies on the axon reaction in a cat hindlimb amputa-
tion model, Dyck et al. described the series of cellular
events after permanent axotomy as they progress from
axonal atrophy to demyelination and, ultimately, axonal
degeneration [37,38,51]. These changes begin, and are
more severe, distally but also affect more proximal seg-
ments of peripheral nerve, with the traumatic axotomy
initiating the cellular changes in a distal-to-proximal
fashion [51]. In order to evaluate the gross and histolo-
gic changes that occur to the entire nerve stump after
nerve transection, we used the rabbit forelimb amputa-
tion model previously developed in our laboratory to
analyze serial nerve sections obtained in a distal-to-
proximal fashion from the distal neuroma to the level of
the brachial plexus—a clinical scenario often seen in tar-
geted reinnervation patients.

In this study, significant increases in nerve cross-sec-
tional area and myelinated axon count between treat-
ment and control limbs were demonstrated at the distal
nerve ends, consistent with previous studies [35]. Given
what is known about neuroma histology, the increased
nerve cross-sectional areas of the distal nerve endings in
our study are mostly due to increased amounts of con-
nective tissue stroma and inflammation in response to
injury [5]. The increased myelinated axon counts in the
distal nerve sections seen in our study can be explained
by the fact that after peripheral nerve transection, a sin-
gle parent axon produces numerous daughter sprouts
[52-54]. As demonstrated in Table 1, the total myeli-
nated axon area accounts for 25-32% of the total nerve
cross-sectional area for both the treatment nerves 15
mm proximally and the control nerves. However, this

ratio progressively decreases to only 5-11% of total
nerve area when moving distally down the nerve, even
though the number of myelinated axon fibers increases.
Although the differences in total axon area and nerve
cross-sectional area seen distally are partly due to
increased connective tissue and inflammation, there is
also less myelinated tissue distally, which may be due to
axon demyelination, and thus the true count of axon
sprouts—myelinated and unmyelinated—would be even
higher than measured in this study. Additionally, the
cross-sectional area of myelinated axons was signifi-
cantly decreased in all serial sections of the treatment
nerves, indicating that, without a distal target for these
sprouts to grow into, axonal atrophy continued to pro-
ceed in a distal-to-proximal fashion to the level of the
brachial plexus. However, increases in nerve cross-sec-
tional area and myelinated axon count diminished dis-
tally-to-proximally with values normalizing by 15 mm
proximal to the amputation. With time and increased
axon loss, the amputated nerves may reduce in size
even further. For example, the cross-sectional area of
the median nerve at the point 15 mm proximally was
significantly decreased compared to that of the control
nerve.

In a rabbit peroneal nerve injury model, Gutmann and
Sanders demonstrated that myelinated fiber sizes were
significantly smaller 15 mm proximal to the lesion com-
pared to controls up to 130 days after injury, with only
slightly increased myelinated fiber numbers [41]. Our
findings are more consistent with those of Aitken, who
demonstrated that in the nerve to the gastrocnemius
muscle of the rabbit, the number of myelinated fibers
proximal to a neuroma increased by greater than 50%
after nerve transection, with an elevated number of
small myelinated fibers [55]. However, although Aitken
noted that the marked increase in myelinated fibers
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Table 1 Measurements of Total Axon Area and Nerve Area
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Nerve Nerve cross-sectional ~ Myelinated axon Myelinated axon cross- Total myelinated Total myelinated axon
area (pmz) count sectional area (pmz) axon area (pmz)* area/Nerve cross-sectional
(Normalized) (Normalized) (Normalized) area
Median
Distal end 823100 (1.71) 9349 (2.44) 8.0 (0.25) 74325 0.090
5mm 651600 (1.36) 7434 (1.94) 14.7 (047) 109205 0.168
proximally
10 mm 421600 (0.88) 5449 (142) 16.1 (0.51) 87729 0.208
proximally
15 mm 326000 (0.68) 3463 (0.90) 27.7 (0.88) 95925 0.294
proximally
Control 480300 (1.00) 3839 (1.00) 31.5 (1.00) 120967 0.252
Radial
Distal end 2498000 (3.19) 13280 (2.42) 9.2 (0.24) 121817 0.049
5mm 1327000 (1.70) 9346 (1.70) 164 (043) 153461 0.116
proximally
10 mm 825100 (1.05) 7445 (1.36) 21.5(0.57) 160216 0.194
proximally
15 mm 708100 (0.91) 6525 (1.19) 293 (0.77) 191052 0.270
proximally
Control 782300 (1.00) 5494 (1.00) 37.9 (1.00) 207948 0.266
Ulnar
Distal end 608500 (2.49) 8407 (2.76) 8.1 (0.32) 68391 0.112
5mm 327400 (1.34) 5370 (1.76) 10.7 (042) 57459 0.176
proximally
10 mm 240500 (0.98) 3308 (1.08) 15.2 (0.60) 50381 0.209
proximally
15 mm 204600 (0.84) 2701 (0.89) 234 (0.93) 63122 0.309
proximally
Control 244500 (1.00) 3050 (1.00) 25.2 (1.00) 76952 0315

*Total myelinated axon area = Myelinated axon count x Myelinated axon cross-sectional area

occurred immediately proximal to neuromas, how far
proximally the regenerating fibers grew in a retrograde
fashion was not evaluated. Using a mouse sural nerve
model, Scadding and Thomas demonstrated a 37%
increase in myelinated axons at a distance of 1.5 cm
proximal to the point of nerve section after 10 weeks
[56]. In our study, the increased number of myelinated
axons in the amputated nerves progressively normalized
compared to controls in a distal-to-proximal fashion;
therefore, there were no significant differences in the
median, radial, and ulnar neuromas in terms of myeli-
nated axon counts at a distance of 15 mm proximally.
However, it is important to note that whereas Scadding
and Thomas used a mouse sural (purely sensory) nerve
model, our study employed larger caliber mixed (motor
and sensory) nerves in the rabbit, making comparisons
difficult to draw. In addition, unlike the methodology of
Scadding and Thomas, the distal 5 mm of neuroma was
excised and excluded for each nerve in our study in an
effort to replicate what is done in targeted reinnervation
procedures, thereby making the “15 mm proximal”
group in our study, in reality, 20 mm from the distal
end of the neuroma.

The extent of retrograde degeneration of amputated
nerves has both functional and therapeutic implications
since aberrant discharges are spontaneously generated
by both neuromas and retrograde axon sprouts
[54,57-61]. In a rat sciatic nerve model, Wall and Gut-
nick demonstrated that smaller fibers within neuromas
produce ongoing spontaneous activity that may be
responsible for sensations of pain [61]. In a study asses-
sing neuromas of the superficial radial nerve in baboons,
Meyer et al. found that spontaneously active fibers were
present in the neuromas, consisting of both myelinated
and unmyelinated axons that were mechanically sensi-
tive, with apparent crosstalk between fibers within the
neuroma [7]. Sixty-seven percent of the spontaneously
active fibers in the neuroma were unmyelinated, com-
pared to 19% in the control, pointing out a potential
link between neuromas and nociceptive pathways. Amir
and Devor showed in a rat sciatic neuroma model that
spontaneous discharges occurred in afferents that termi-
nated in the neuroma, as well as in afferents that had
emitted retrograde sprouts [57]. In fact 39% of fibers
with retrograde sprouting carried spontaneous ongoing
discharges, and, conversely, the authors point out those
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axons with spontaneous activity were significantly more
likely to have a retrograde sprout. Amir and Devor pro-
posed that individual neurons that emit retrograde
sprouts have an unusually high likelihood of firing spon-
taneously [57], which, in conjunction with an increased
capacity for myelinated A-B sprouts to make contact
with nociceptive-specific neurons [62-64], can result in
pain.

Repeated noxious stimuli—as in the case of an acutely
injured peripheral nerve, in addition to spontaneous dis-
charges from neuromas and sprouting axons—lead to
decreased activation thresholds, and responses to subse-
quent stimuli are thereby amplified [65,66]. The afore-
mentioned increase in excitability further exacerbates
nociception by leading to decreased inhibition from
afferent fibers [67-69], thereby creating a state of central
sensitization of neural tissue involved in pain perception.
Whereas potential therapies for central pain pathways
are beyond the scope of this discussion [70-72], the nox-
ious stimuli in the peripheral nervous system that ignite
the cycle of events that ultimately lead to central per-
ceptions of pain are important for this discussion. With
retrograde sprouts being able—and more likely—to pro-
duce spontaneous, ectopic discharges after peripheral
nerve injury, it is possible that neuroma treatment pro-
cedures should focus not only on excising the neuromas,
but also on removing any proximal neural tissue that
contains retrograde axonal sprouts.

During clinical procedures for the treatment of
symptomatic neuromas, in addition to nerve transfer
procedures like targeted reinnervation, complete exci-
sion of the “neuroma” is recommended, but where
exactly does the neuroma begin? In our study, gross
neuroma appearance did not correlate with the “zone
of injury” of the proximal nerve stump on an axonal
level. Morphologic changes at the axonal level
extended beyond the region of gross neuroma forma-
tion, measured as nerve cross-sectional area, in a dis-
tal-to-proximal fashion after nerve transection,
supporting the first of two main intra-operative con-
cepts: First, a normal-sized nerve end does not neces-
sarily mean that the nerve is internally normal.
Second, approximately 2 centimeters proximal to a
neuroma bulb, in a rabbit, the majority of sprouted
axons would be removed. Given the potential for ret-
rograde axon sprouts to produce ectopic, spontaneous,
and painful discharges, we propose that cutting back
more proximally on the nerve stump, beyond the
appearance of grossly normal-appearing fascicles, may
be beneficial during neuroma surgery in symptomatic
patients. Employing the use of intra-operative frozen
sections would be an effective method of minimizing,
if not eliminating, any neural tissue that contains ret-
rograde sprouts. However, this raises the interesting
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question of whether there is an optimal site to cut
back on a neuroma that is going to be used for nerve
transfer, such as targeted reinnervation. Cutting back
further proximally will leave a nerve segment with
fewer axon sprouts than using a nerve segment that is
closer to the neuroma bulb, though it has yet to be
determined whether cutting back in this fashion would
have any detrimental functional consequences. Also,
there are clinical scenarios for which nerve length is a
major limiting factor where it would be unfeasible—
detrimental even—to cut back neuromas more proxi-
mally, such as when treating neuromas-in-continuity
for brachial plexus reconstruction. Injuries to the bra-
chial plexus itself can potentially demonstrate histolo-
gic changes proximally to the level of the cervical root
or spinal cord, making excision and subsequent recon-
struction impractical. On the other hand, when per-
forming targeted reinnervation, the nerves can be cut
far proximally (3-12 c¢cm) from the end-neuroma with-
out difficulty or consequence. Therefore, the surgeon
must decide how far proximally to cut back on a neu-
roma based on the clinical indication and overall
operative plan.

When considering the discrepancy that exists between
gross and histologic neuromas, one must change how
we evaluate neuromas, not only clinically, but also with
respect to bench research. There is a need for improved
standardization among neuroma models in terms of
where along the length of the proximal nerve stump
measurements should be made. A look at several large-
animal neuroma models makes it apparent that little
mention is made as to where exactly, whether in the
neuroma itself or at a specified distance proximal to the
gross neuroma, histologic analysis is being performed
[6,73,74]. A neuroma at its largest diameter has different
characteristics than a nerve segment just 5 mm proxi-
mally, as reinforced by our study. It is imperative that
data collection in animal models that relies on axon
counts, axon size, and other quantitative parameters
must therefore standardize the sites where nerve mea-
surements are made.

Conclusions

Using a rabbit forelimb amputation model that was
developed to further assess targeted reinnervation, we
determined that morphologic changes at the axonal
level extend beyond the region of gross neuroma forma-
tion in a distal-to-proximal fashion after nerve transec-
tion at the level of the brachial plexus. Normal-sized
nerves do not correlate with normal nerve histomorpho-
metry in this model, and the discrepancy between gross
and histologic neuromas indicates potential implications
for how neuromas should be viewed, both in the labora-
tory and in the operating room.
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