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Abstract

Background: The etiology of Bell’s palsy can vary but anterograde axonal degeneration may delay spontaneous
functional recovery leading the necessity of therapeutic interventions. Corticotherapy and/or complementary
rehabilitation interventions have been employed. Thus the natural history of the disease reports to a neurotrophic
resistance of adult facial motoneurons leading a favorable evolution however the related molecular mechanisms
that might be therapeutically addressed in the resistant cases are not known. Fibroblast growth factor-2 (FGF-2)
pathway signaling is a potential candidate for therapeutic development because its role on wound repair and
autocrine/paracrine trophic mechanisms in the lesioned nervous system.

Methods: Adult rats received unilateral facial nerve crush, transection with amputation of nerve branches, or sham
operation. Other group of unlesioned rats received a daily functional electrical stimulation in the levator labii
superioris muscle (1 mA, 30 Hz, square wave) or systemic corticosterone (10 mgkg-1). Animals were sacrificed seven
days later.

Results: Crush and transection lesions promoted no changes in the number of neurons but increased the
neurofilament in the neuronal neuropil of axotomized facial nuclei. Axotomy also elevated the number of GFAP
astrocytes (143% after crush; 277% after transection) and nuclear FGF-2 (57% after transection) in astrocytes
(confirmed by two-color immunoperoxidase) in the ipsilateral facial nucleus. Image analysis reveled that a seven
days functional electrical stimulation or corticosterone led to elevations of FGF-2 in the cytoplasm of neurons and
in the nucleus of reactive astrocytes, respectively, without astrocytic reaction.

Conclusion: FGF-2 may exert paracrine/autocrine trophic actions in the facial nucleus and may be relevant as a
therapeutic target to Bell’s palsy.

Background
It is important the knowledge on the molecules involved
in the trophic mechanisms of motoneurons in order to
develop therapeutic targets to peripheral nerve disorders
which are the case of facial nerve in the Bell’s palsy. The
disease usually does not last long and undergoes sponta-
neous recovery in many cases but sometimes therapeutic

interventions are necessary to reduce the symptoms or
when amelioration is not achieved.
In the disorder, the compromised facial nerve swells

up and presses against its trajectory inside the temporal
bone, being squashed and functionally/anatomically
impaired [1]. Around one in five people will suffer long
lasting symptoms. In patients presenting incomplete
facial palsy and probably bearing only functional impair-
ments, the prognosis for recovery is very good and treat-
ment may be unnecessary. On the other hand, patients
presenting complete paralysis, marked by an inability to
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close the eyes and mouth on the involved side, that
received early treatment might show a favorable
response by 3-12 months [2]. This indicated that injured
facial neurons can be rescued and might undergo regen-
eration, a process that takes time considering the dis-
tance to facial muscle targets. However, some cases are
resistant to current proposed treatments which are
mainly based on antiinflammatory drugs and local neu-
romuscular manipulations [3].
Different from peripheral sensory neurons that seem

to be less resistant to axotomy probably because of a
high dependence of trophic support from their innerva-
tion targets, the majority of adult peripheral motoneur-
ons survive after an injury of their fibers. Motoneuron
trophism is probably a result of autocrine/paracrine
mechanisms which take place at cell perykaria that are
able to the rescue axotomized cells. Moreover, the pro-
tection of neuronal cell bodies from degeneration is
essential for axonal regeneration and similar cell signal-
ing might be involved in both events [4].
Basic fibroblast growth factor (FGF-2, bFGF) is a

mitogenic protein capable of acting on multiple cell
types such as neurons and glial cells [5]. FGF-2 protein
and messenger RNA (mRNA) have been found in the
cytoplasm of neurons and in the nuclei of astrocytes of
many brain regions [5-8]. FGF-2 plays a role in the neu-
ronal development in prenatal life and also influence
survival and plasticity of mature central nervous system
(CNS) neurons [9,10]. Furthermore, paracrine actions of
the astroglial FGF-2 have been described following post-
natal CNS lesions [11,12].
Lesions to the CNS have been described to induce a

strong expression of FGF-2 mRNA and protein in acti-
vated astroglial cells in the area of the injury [11-14].
Although an increasing number of studies have pointed
out the role of FGF-2 following cellular lesion, few
works have attempted to investigate cellular regulation
of FGF-2 in response to axotomy of the peripheral
motoneurons. It is likely that the ability of adult periph-
eral motoneurons to survive after axotomy is probably
due to multiple cellular sources of trophic support
[15-18]. This feature must be better interpreted in order
to achieve effective therapeutic targets leading to bene-
fits for those patients with impaired functional recovery
after Bell’s palsy.
The present work analyzed the neuronal and glial

responses as well as cellular FGF-2 regulation in the
facial nucleus following a cervical crush or transection,
with amputation of nerve branches, of facial nerve of
the adult Wistar rat. We have also examined the effects
of systemic corticosterone and functional electrical sti-
mulation applied in a facial muscle on FGF-2 expression
in non axotomized facial nuclei.

Methods
Animals and experimental procedures
Specific pathogen-free adult male Wistar rats (University
of São Paulo, Medical Scholl) of 250 g body weight
(b.w.) were used in the experiments. The animals were
kept under standardized lighting conditions (light on at
7:00 h and off at 19:00 h), at a constant temperature of
23°C and with free access to food pellets and tap water.
The study was conducted according protocols approved
by the Animal Care and Use of Ethic Committee at the
University of São Paulo and in accordance with the
Guide for Care and Use of Laboratory Animals adopted
by the National Institutes of Health.

Facial nerve injury
In the first set of experiments, rats (n = 18) were sub-
mitted to a sham-operation, a crush or a transection of
the facial nerve as described. Briefly, under sodium pen-
tobarbital (45 mgkg-1, Cristalia, São Paulo, Brazil)
anesthesia, the rat facial skin of the right side was
opened near the ear and the facial nerve of that side
was isolated. Following, the facial nerves were crushed
(n = 6) twice with a pair of Dumont #5 forceps for
30 sec, 3 mm from the stylomastoid foramen or comple-
tely transected (n = 6) with delicate tweezers being the
distal and proximal nerve stumps inverted and tied. In
the sham-operated animals (n = 6) the facial nerves
were exposed and isolated in an identical manner but
they were not axotomyzed. Animals were sacrificed 7
days after the surgery and their brain processed for
immunohistochemistry.

Systemic drug injection and functional electrical
stimulation
In a second set of experiments employing unlesioned
rats, effects of systemic corticosterone injection or local
functional electrical stimulation were evaluated on non
axotomized facial nuclei. In a group of rats, animals
received systemic daily injections of corticosterone
(10 mg × kg-1 b.w., ip., n = 6) or solvent (n = 6) for seven
days. Corticosterone (Sigma, USA) was suspended in
deionized water solution containing carboxymethylcellu-
lose natrium salt (0.25% w/v; Sigma) and polyoxyethylene
sorbital mono-oleate (tween 80, 0.2% v/v; Sigma). All
injections were made in the afternoon to mimic the
endogenous peak of corticosterone secretions and the
solvent was given in the same volume and in the same
time as the corticosterone injections. This high dose of
corticosterone was chosen, since it is a standard dose
used to mimic the stress level of corticosterone [19].
Other group of rats with unlesioned facial nerve was

submitted to a functional electrical stimulation accord-
ing to protocols of Miles [20], Pilyavskii [21] and of
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Blum [22] adapted for facial muscles by our group.
Briefly, a thread electrode for stimulation (1.0 cm long/
0.7 mm thickness) made of stainless steel fixed in a sili-
cone-isolated copper thread was connected to an electri-
cal stimulator. Twenty-four hours prior first stimulation,
animals were anaesthetized (a combination of S
(+)-ketamin cloridrate, 62.5 mg × kg-1 and xilazine clori-
drate, 10 mg × kg-1, respectively from Cristalia and Vet-
brands, São Paulo, Brazil) and submitted to a surgical
procedure in order to expose the right side of levator
labii superioris muscle and to perform local implanta-
tion of a thread electrode which was fixed by means of
a surgical 10-0 mononylon thread. After a short trajec-
tory through the subcutaneous layer, the silicone-
isolated copper thread was exteriorized through a small
aperture in the dorsal surface of the rat neck. The tip of
that exteriorized thread was daily connected to the elec-
trical stimulator only during the period of stimulation
sections. Furthermore, a second electrode was fixed in
the skin/subcutaneous layer to ground the stimulation.
The procedure was validated by examining the muscle
response after stimulation. Animals not showing visible
contractions or vibrissal movements, or requiring cur-
rents higher that 1 mA were discarded. Twenty-four
hours later, awake and free moving animals were sub-
mitted to the electrical stimulation protocol by means of
a 4-channels-electrical stimulation (Vif FES 4, Quark,
Brazil). The stimuli consisted of a 1 mA current, 30 Hz
frequency with a square wave (5 sec on/10 sec off),
which was applied daily, for 30 min in the beginning of
the morning. Control rats were submitted to electrode
surgical implantations, daily connected to stimulator
without receiving the electrical stimulation.
Animals of the second set of experiments were also

sacrificed 7 days after the beginning of the procedures
and their brain processed for immunohistochemistry.

Tissue processing
After the experimental procedures described above, rats
were deeply anaesthetized with sodium pentobarbital
10% (420 mg/kg/b.w., i.p.) and euthanized by a perfusion
through a cannula inserted in the ascending aorta with
50 ml of isotonic saline at room temperature followed
by 350 ml of fixation fluid (4°C) during 6 min as
described previously [23,24]. The fixative consisted of
4% (w/v) paraformaldehyde and 0.2% (v/v) picric acid in
0.1M phosphate buffer (pH 6.9). The brains were dis-
sected out and kept in the fixative solution for 90 min.
The fixed brains were washed in 10% sucrose dissolved
in 0.1M phosphate buffered saline (PBS pH 7.4) for
2 days, frozen in ice-cold isopentane and stored at
-70°C. Coronal brain sections (14 μm thick) were made
through the facial nucleus from bregma level -11.60 mm
to -10.3 mm, according to the atlas of Paxinos & Watson

[25], using a Leica cryostat (CM 3000, Germany). Sec-
tions were sampled systematically and six series in a ros-
trocaudal order including every sixth section were used
for immunohistochemistry. The analyses were per-
formed in the facial nuclei bilaterally.
The series of thaw-mounted sections were incubated

overnight at 4°C in a humidified chamber with one of
the following antisera: a rabbit polyclonal FGF-2 anti-
serum against the bovine FGF-2 [26] (diluted 1:800), a
rabbit polyclonal antiserum against the glial fibrillary
acidic protein (GFAP, 1:1500, Dakopats, Danmark) or a
mouse monoclonal antiserum against the neurofilament
(NF, only in the experiments of facial nerve injury) of
molecular weight 200 kDa (1:1000) (Sigma, USA). The
antibodies were diluted in PBS containing 0.3% Triton
X-100 (Sigma) and 0.5% bovine serum albumin (Sigma).
The detection of the antibodies was achieved by the
indirect immunoperoxidase method using the avidin-
biotin peroxidase (ABC) technique as previously
described [27-29]. After washing in PBS (3 × 10 min),
the sections were incubated with a biotinylated goat
anti-rabbit or biotinylated horse anti-mouse antibodies
(both diluted 1:200, Vector, USA) for one hour. In a
third step, sections were washed in PBS and incubated
with avidin-biotin peroxidase complex (both diluted
1:100, Vectastain, Vector) during 45 min. The staining
was performed using 0.03% of 3,3’-diaminobenzidine tet-
rahydrochloride (DAB, Sigma) as a chromogen and
0.05% (v/v) of H2O2 (Sigma) during 6-8 min, which gave
a brownish color to the immunoreaction. Duplicate ser-
ies of NF and GFAP immunoreactive sections from the
facial nerve injury were stained by cresyl violet (CV) for
interalia visualization of Nissl substance. For standardi-
zation of the immunohistochemical procedure we have
used a dilution of the primary antibody and a DAB con-
centration far from saturation and an incubation time
adjusted so that the darkest elements in the brain sec-
tions were below saturation. The FGF-2 antiserum is a
well characterized polyclonal antiserum raised against
the n terminal (residues 1-24) of the synthetic peptide
of bovine FGF-2 (1-146) [26]. This antiserum does not
recognize acidic FGF (cross reactivity less than 1%) [11].
As control, sections were incubated overnight at 4°C
with the FGF-2 antiserum (diluted 1:800) pre-incubated
with human recombinant FGF-2 (50 μg/ml, for 24 h at
4°C). For a further analysis of the immunostaining speci-
ficity, sections were also incubated with the solvent of
the primary or secondary antibody solutions as well as
the solvent of the avidin-biotin solution and processed
simultaneously in the experimental sections.
The two-color immunoperoxidase method was

employed in a series of sections for a simultaneous
detection of the FGF-2 and GFAP immunoreactivities.
The FGF-2 immunoreactivity was firstly demonstrated
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as described above. Following the DAB reaction, the sec-
tions were rinsed several times in PBS and were incu-
bated during 48 h in a humidified chamber with the
rabbit polyclonal antiserum against GFAP described
above (1:500). After several rinses in PBS, the sections
were incubated with biotinylated goat anti-rabbit immu-
noglobulins (1:200, Vector) for 1 h at room temperature
and with an avidin and biotin peroxidase solution (both
diluted, 1:100; Vectastain, Vector) for 45 min at room
temperature. The staining was performed using 4-chloro
naphthol 0.05% (Sigma) as a chromogen and 0.05% (v/v)
H2O2 (Sigma) during 10 min. This procedure gave a
brownish color to the FGF-2 immunoreactivity and a
bluish a color to the GFAP immunoreaction. The
immunoreactivities were also analyzed qualitatively and
photographed in an Olympus AX70 photomicroscope
(USA).

Quantitative analysis
Cell Counting
The NF+CV neuronal profiles, GFAP+CV astroglial pro-
files and the glial FGF-2 immunoreactive profiles from
the facial nerve injury experiment were counted under
camera lucida microscopy at 16× magnification
mounted in a Zeiss microscope (Germany). An area of
116.39 μm2 was sampled in the central region of the
right side (lesioned side) and the left side (control side)
of the facial nucleus and the profiles were counted. The
cytoplasmatic and nuclear localization of the FGF-2
immunoreactivity [9] were taken into account in the dis-
crimination of the neuronal and glial FGF-2 cell profiles.
In order to minimize individual variability, the data were
presented and evaluated statistically as the quotient of
ipsi vs contralateral sides.
Semiquantitative microdensitometric image analysis
FGF-2 immunoreactivity in sections from experiments of
systemic corticosterone injection and facial functional
electrical stimulation of unlesioned facial nerve rats was
submitted to semi quantitative image analysis measure-
ments. We have not performed a cell counting in the unle-
sioned animals because the qualitative evaluations showed
a major change in the intensity of FGF-2 immunoreactivity
per cell profiles and not in the number of profiles. To
maximize the intensities of the FGF-2 immunoreactivity
on neuronal and glial profiles, this analysis was performed
on sections of rat brains from the rostro-caudal levels
described above [29,30]. Fields of measurements were
sampled in the central regions of the facial nuclei bilater-
ally. The procedures using a Kontron-Zeiss KS400 image
analyzer (Germany) have been described previously
[9,30-32]. Briefly, a television camera acquired images
from the microscope (40× objectives). After shading cor-
rection, a discrimination procedure was performed as fol-
lows: the mean gray value (MGV) and S.E.M. of white

matter was measured in an area of the medulla oblongata
devoid of specific labeling (background, bg). Gray values
darker than bgMGV-3 S.E.M. were considered specific
labeling. The specific (sp) MGV was then defined as the
difference between the bgMGV value and the MGV of the
discriminated profiles. The size of the sampled field was
2.56 × 10-2mm2. This parameter reflects the immunoreac-
tive intensities in the discriminated profiles (spMGV) and
indicates, semiquantitatively, the amount per profile of the
measured immunoreactivity. The area of discriminated
profiles within the sample fields was also registered and
reflects the amount of profiles processing the immunor-
eactive product. The glass value was kept constant at 200
MGV. The procedure was repeated for each section to
correct every specific labeling measurement for back-
ground. Moreover, DAB and H2O2 were used in optimal
concentrations and FGF-2 antibody dilution was far from
saturation. Under these conditions, the steric hindrance of
peroxidase complex does not appear to disturb the linear
relationship between antigen content and staining inten-
sity. However, in the absence of a standard curve, the rela-
tionship between antigen content and staining intensity is
unknown, and the results must be considered as semi-
quantitative evaluations of the amount of antigen present
in the sampled field. Thus, spMGV only gives semiquanti-
tative evaluations of the intensity of FGF-2 immunoreac-
tivity [33]. In the corticosterone experiments, the data
represent mean of the bilateral measurements and in the
functional electrical stimulation experiments, the data
represent the quotient of ipsilateral vs contralateral sides.
The statistical analysis was performed using the non-

parametric Mann-Whitney U-test [34]. The number of
each animal represents the Mean ± S.E.M. obtained in
each side of the facial nuclei of the sampled sections.

Results
Axotomy of facial nerve
Increases in the number of the FGF-2 immunoreactive
nuclear glial profiles were found in the ipsilateral facial
nuclei seven days after both methods of axotomy, however
significance was reached after nerve transection with
amputation of nerve stumps (57.97%, Figure 1A, illustrated
in Figure 2A-D). Moreover, no statistical differences were
obtained between crush and transection regarding the
number of FGF-2 immunoreactive profiles (Figure 1A).
Despites facial nerve crush and transection have promoted
no changes in the number of the FGF-2 immunoreactivity
of neuronal profiles in the lesioned side (Figure 1B), the
intensity of the FGF-2 immunoreactivity increased slightly
in the cytoplasm of neuronal profiles seven days after the
axotomy as evaluated qualitatively by means of a direct
microscopic analysis (Figure 2A-D).
The number of the GFAP immunoreactive glial pro-

files increased in the ipsilateral facial nuclei of the
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crushed (193.41%) and transected (277.53%) animals 7
days after axotomy (Figure 1C). The intensity of the
GFAP immunoreactivity per cell was also elevated in the
lesioned facial nuclei (Figure 3A-D). The astrocytic

reaction in the facial nuclei induced by the nerve crush
or transection was also observed by the increased size of
the cytoplasm and processes of the GFAP immunoreac-
tive profiles (Figure 3A-D).

Figure 1 Effects of the unilateral crush or transection of facial nerve on FGF-2 immunoreactive data. Ratio number of fibroblast growth
factor-2 (FGF-2) immunoreactive glial (A) and neuronal (B) profiles, of glial fibrillary acidic protein (GFAP) immunoreactive astrocytic profiles (C),
neurofilament plus cresyl violet immunoreactive neuronal profiles (D) of the facial nucleus of the rats. The vertical axis represents the ratio of the
number of immunoreactive profiles in the ipsilateral versus contralateral nucleus. Animals were studied 7 days after injury (means ± S.E.M., n =
6). *p < 0.05 according to the non-parametric Mann-Whitney U test.
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Figure 2 Microphotographs showing fibroblast growth factor (FGF-2) immunoreactivity in coronal sections of rat facial nucleus.
Animals were submitted to the following procedures and sacrificed 7 days later: a transection of the facial nerve (with amputation of the nerve
stumps) (B, D) or a sham operation (A, C); a 7-days systemic treatment of corticosterone (daily ip. injection of 10 mg × kg-1, corticosterone) (E)
or solvent (F); a 7-days unilateral functional electrical stimulation of the levator labii superioris muscle after a local implantation of a mononylon
thread electrode (1 mA current, 30 Hz frequency square wave) (G) or without current as control (H). The facial nerve was not lesioned in the
corticosterone and electrical stimulation experiments. The figures C and D represent higher magnification of areas inside the nuclei showed in
figure A and B, respectively. The FGF-2 immunoreactivity is seen in the cytoplasm of neurons (arrows) and in the nuclei of glial cells
(arrowheads), respectively. It is observed that the transection of the facial nerve and also systemic corticosterone increased the FGF-2
immunoreactivity in the nuclei of glial cells in facial nuclei ipsilateral to the injury and bilaterally after drug injection. The functional electrical
stimulation of the levator labii superioris led to increase of FGF-2 mainly in the cytoplasm of neurons of facial nucleus ipsilateraly. Bars = 50 μm
(A, B), 25 μm (C-H).
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Figure 3 Microphotographs showing rat facial nuclei submitted to immunohistochemistry of different markers. Animals were submitted
to the transection of the facial nerve (with amputation of the nerve stumps) (B, D, F, H) or submitted to a sham operation (A, C, E, G), 7 days
before the sacrifice. The figures A-D show glial fibrillary acidic protein (GFAP) immunoreactivity, figures E-H show neurofilament (NF) ones in
coronal sections of the facial nucleus of rats. The figures C, D and G, H represent higher magnification of areas inside the nuclei showed in
figure A, B and E, F, respectively. Arrowheads show GFAP immunoreactive astrocytes and arrows point to NF immunoreactive neurons. The
GFAP immunoreactivity is increased in the cytoplasm and processes of astrocytes of the facial nucleus of the lesioned rats (B, D). Furthermore,
NF immunoreactivity is increased in the cell body of neurons and neuropil of the facial nucleus of the lesioned rats (F, H). Bars = 100 μm (E, F),
50 μm (A, B, G, H), 25 μm (C, D).
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Nerve injuries did not promote changes in the number
of NF+CV neurons of the lesioned side of the seven
day-axotomized facial nuclei compared to sham rats
(1 ± 0.04, 0.91 ± 0.052, 1.08 ± 0.06 of the control,
crushed and transected rats, respectively, Figure 1D).
Despites of that, the NF immunoreactivity increased in
the perykaria, as well as axonal and dendritic fibers of
the ipsilateral facial nuclei of both crushed and trans-
ected animals (Figure 3E-H).
The two-color immunoperoxidase procedure for the

simultaneous detection of the FGF-2 and GFAP immu-
noreactivities revealed that the vast majority of the
nuclear FGF-2 immunoreactive cell profiles were GFAP
positive astrocytes in the rat facial nuclei (Figure 4).
Furthermore, a higher amount of FGF-2 was found in
the nucleus of the reactive astrocytes of axotomized
facial nuclei (Figure 4).
The control sections incubated with FGF-2 antibody

preadsorbed with human recombinant FGF-2 showed
no specific labeling. The control sections incubated with
the solvent of the primary and secondary antisera or
with the solvent of the avidin-biotin solution showed no
immunoreactivity (data not shown).

FGF-2 in the facial nucleus after systemic corticosterone
treatment
As shown in the Figure 5A-B, a seven days-systemic
injections of corticosterone resulted in a significant
increase of FGF-2 immunoreactivity in the rat facial
nuclei as seen from the measurements of FGF-2 immu-
noreactive area (75.8%) and spMGV (16.4%). The quali-
tative analysis of the FGF-2 immunoreactivity revealed
an increased number of putative glial profiles processing
higher amount of the immunoreaction product and only
few neurons showing an elevation of the FGF-2 immu-
noreactivity in the facial nuclei of corticosterone treated
rats compared to control animals (illustrated in Figure
2E, F). Procedures for GFAP and FGF-2 double labeling
showed the presence of FGF-2 immunoreactivity in the
nuclei of astrocytes as demonstrated in the facial nerve
injury experiments, however astrocytes have not become
reactive after corticosterone treatment (data not shown).

FGF-2 in the facial nucleus after functional electrical
stimulation of the levator labii superioris muscle
A seven days-functional electrical stimulation promoted
increases of FGF-2 immunoreactivity in the rat facial
nuclei as seen from the measurements of FGF-2 immu-
noreactive area (127%, quotient of ipsi vs contralateral
sides) and spMGV (18%, quotient of ipsi vs contralateral
sides, but without statistical significance) (Figure 5C, D).
The qualitative analysis of the FGF-2 immunoreactivity
revealed a higher amount of the immunoreaction pro-
duct mainly in neurons and only few astrocytes showing

elevation of the FGF-2 immunoreactivity in the facial
nuclei of electrical stimulated rats compared to non sti-
mulated control animals (Figure 2G, H). In this experi-
ment, FGF-2 immunoreactivity was located in the
nucleus of astrocytes in the same manner that was
found in the other two experiments, however astrocyte
have not become reactive after functional electrical sti-
mulation (data not shown).

Discussion
Retrograde reactions to axotomy leading to morphologi-
cal and biochemical changes in the neuronal perykaria
[35,36] compose a set of responses to maintain the neu-
ronal trophism/plasticity and to trigger axonal regenera-
tion [37-39].
Axotomy of facial nerve applied in this work did not

promote changes in the number of NF+Nissl substance
stained facial motoneurons either after a crush lesion,
which allows immediate fiber growth, or a transection
lesion with amputation of nerve stumps. These findings
are in agreement and extend previous reports that have
demonstrated the resistance of mature motoneurons to
axotomy of their fibers [40]. The present findings show-
ing an increased amount of 200 kDa NF immunoreactiv-
ity, the major protein of the neuronal cytoskeletal
intermediate filament, in the cell bodies and neuropil of
axotomized facial neurons are in accordance with pre-
vious publications that have demonstrated a remarkable
regenerative capacity of motoneurons following axotomy
in adult rodents and human beings [41]. Tetzlaff and
co-workers [42,43] have demonstrated increased synth-
eses of the cytoskeletal proteins actin and tubulin after
axotomy of the rat facial nerve simultaneously to the
enhanced NF contents and a low regulation of NF
synthesis. Differential regulation of expression and accu-
mulation of the cytoskeletal proteins in axotomized cell
bodies and fibers could be due to their different timing
regarding turnover, phosphorilation and participation in
specific cell restoration, plasticity and regeneration pro-
cesses [44].
The retrograde phenomenon following axotomy was

also observed by the astrocytic reaction in the injured
facial nuclei. Activation of astrocytes has been demon-
strated after neuronal lesion [45], electrical stimulation
[46], cytokine administration [47] by means of the
increases of GFAP immunoreactivity or mRNA. The
astrocytic activation has been described to be related to
local ionic homeostasis as well as to production of neu-
rotrophic factors [48]. In fact, the paracrine actions lead-
ing to neuronal trophic support promoted by the CNS
astrocytes have been considered to be important for
maintenance and plasticity of the injured neurons [49].
Our findings of increased GFAP immunoreactivity in

the facial nucleus following crush or transection lesions
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of facial nerve are in agreement and extend previous
observations which have described retrograde astroglial
reactivity after axotomy of cranial motoneurons [15] and
also lesions of spinal nerves containing sensory and
motor fibers [18,45].
It is well known that the peripheral sensory neurons

require a target-derived trophic support [50] and the

axotomy of their fibers leads to a partial disappearance
of the cell bodies located in the peripheral ganglia [51].
Moreover, axotomy of peripheral motor fibers does not
trigger apoptosis of damaged neurons acutely, however
a certain degree of a long term cell body atrophy and
cell death might take place in the axotomized moto-
neurons in the cases of regeneration failure [52]. These

Figure 4 Color microphotographs showing FGF-2 and GFAP immunoreactivities in coronal sections of rat facial nucleus. Animals were
submitted to the transection of the facial nerve (with amputation of the nerve stumps, A, or sham operation, B), 7 days before sacrifice. The
two-color immunoperoxidase method employing different chromogens was used. The diaminobenzidine (brownish color) and the 4-chloro-
naphthol (bluish color) were used for detection of the fibroblast growth factor-2 (FGF-2) and glial fibrillary acidic protein (GFAP)
immunoreactivities, respectively. Arrowheads show FGF-2 immunoreactivity in the nuclei of the GFAP immunoreactive astrocytes. It is also seen
the FGF-2 immunoreactivity in the cytoplasm of neurons (arrows). Bars = 10 μm.
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Figure 5 Effecs of corticosterone or functional electrical stimulation on FGF-2 immunoreactive data of rat facial nuclei. Figure shows
area (A, C) and specific mean gray value (spMGV; B, D) of FGF-2 immunoreactive profiles in the sampled fields of the rat facial nuclei after
systemic corticosterone or solvent injection (A, B) and functional electrical stimulation (C, D). Measurements were performed in the facial nuclei
bilaterally in the corticosterone experiment and ipsilaterally to the levator labii superiors muscle electrode implantation in the functional electrical
stimulation experiments. The control animals for functional electrical stimulation received electrode without electrical current. Morphometric/
microdensitometric image analysis was used. The measurements represent the FGF-2 immunostaining area (within a 2.56 × 10-2 μm2 sampled
field) and intensities (spMGV, arbitrary values) and reflect the number and amount per profile of the measured immunoreactivity, respectively
(see text for details). Values are means ± S.E.M.; n = 4-5;*p < 0.05 according to the non-parametric Mann-Whitney U test.
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considerations already underline the importance of auto-
crine/paracrine mechanisms in the trophic regulation of
motoneuron perikarya.
The search for sources of trophic support for periph-

eral neurons after axotomy has led to descriptions of
increased synthesis of neurotrophic factors in the proxi-
mal and distal stumps of the injured nerve [53]. More-
over, Heumann and co-workers [54] have observed an
increased level of nerve growth factor protein and
mRNA in non neuronal cells surrounding the axons of
sensory and motor neurons and Levy and co-workers
[18] showed increased levels of FGF-2 in the dorsal root
ganglia satellite cells surrounding the cell bodies of axo-
tomyzed peripheral sensory neurons. In fact, local pro-
duction and release of neurotrophic molecules in
different parts of compromised neurons may be related
to specific functions such as wound repair, trophic sup-
port for neuronal maintenance and nerve fiber sprout-
ing/outgrowth [55], this late resembling the reinervation
of the distal nerve stump and target [56] when regenera-
tive conditions are offered.
An important finding of the present work was the sub-

stantial increases of FGF-2 in the reactive astrocytes of
axotomized facial nuclei. It is known that the FGF-2 is a
potent survival factor for neurons from different parts of
the nervous system and that the molecule can also pro-
tect neurons from several types of injury [9,14,57-59]. It
is the first time that an upregulation of a neurotrophic
factor has been described in the reactive astrocytes close
to axotomized facial neuronal cell bodies thus highlight-
ing the importance of paracrine trophic mechanisms to
those injured neurons as it has been extensively described
for others CNS lesioned regions [60]. Astroglial FGF-2
upregulation in reactive astrocytes of transected facial
nucleus was similar to that recently published by our
group in the hypoglossal nucleus after injury of their
fibers [15]. It is possible that the upregulated astroglial
FGF-2 in the axotomized facial nucleus may act as a
paracrine factor for cell body maintenance and probably
influence axonal regeneration as it has been described for
certain types of central neurons[61].
The present study, using a polyclonal antiserum, has

also shown the presence of FGF-2 immunoreactivity in
the cytoplasm of facial motoneurons, which is in agree-
ment with previous observations that have demonstrated
FGF-2 immunoreactivity in neurons of several brainstem
nuclei using different polyclonal antibodies [6,8,16,62].
In the present paper we have described moderate ele-

vations of the FGF-2 immunoreactivity in the cytoplasm
of neurons without changes in the number of those
immunopositive cells following facial nerve axotomy
indicating a possible additional autocrine role.
It was reported that the FGF-2 synthesized in the ton-

gue may be retrogradaly transported to the hypoglossal

nucleus thus acting as a target derived neurotrophic fac-
tor. Actually, a transient down regulation of neuronal
FGF-2 immunoreactivity in the ipsilateral axotomized
hypoglossal nucleus was described [63], however major
events showed by our group have been the upregulation
of astroglial FGF-2 in the axotomized hypoglossal
nucleus [15] and facial nucleus (this paper).
Indeed, FGF-2 undergoes receptor-mediated internali-

zation and retrograde transport in the central [64] and
peripheral nervous system [63]. Because the levels of
astroglial reaction (seen by the increased number of
GFAP immunepositive cells) and the levels of the
changes in the astroglial FGF-2 immunoreactivity were
higher after facial nerve transection (without fiber
regeneration) than after crush (leading to a favorable
regeneration), it is possible that such a regenerative fail-
ure-impairing the internalization of FGF-2 synthesized
in the periphery might have favored FGF-2 synthesis in
reactive astrocytes of transected facial nucleus. Thus,
paracrine actions of the astroglial FGF-2 in the facial
nucleus might help to maintain the trophism of the
facial neurons when fibers are disconnected from the
target.
In addition to neuronal lesions [11,13,57,65], different

experimental designs have been used to study the role
of neurotrophic factors in the CNS. Exogenous adminis-
tration of growth factors to the brain [9,14,58,66], neu-
ronal stimulation [16], physical activity [67], hormonal
manipulation [32,68-70] and electrical stimulation [71]
applied in neuronal pathways are also commonly
employed.
The ability of exogenous neurotrophic factors to trig-

ger neuroprotection and to prevent diminution of neu-
rotransmitter synthesis following cranial nerve axotomy
in the neonatal and adult life has been described. Cuevas
and co-workers have shown that acidic fibroblast growth
factor topically applied prevents the axotomy-induced
neuronal death in the newborn rat facial nerve [72].
Brain derived neurotrophic factor also promoted the
survival of the axotomized immature facial motoneurons
in vivo [73] and attenuated the lesion induced-decrease
of choline acetyltransferase (ChAT) immunoreactivity
and activity in adult facial motoneurons [74]. Sendtner
and co-workers have demonstrated that the vulnerability
of motoneurons to axotomy in the early postnatal life is
prevented by a local application of cilliary neurotrophic
factor (CNTF) [75]. The glial-derived neurotrophic fac-
tor was demonstrated to rescue axotomy-induced death
of facial neurons and to attenuate the diminution of
immunoreactivity in the axotomized facial nucleus of
neonates [76]. Finally, implantation of cell lines geneti-
cally engineered to release CNTF in the brain of mouse
with a progressive neuropathy seems to rescue moto-
neuron loss [77].
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Besides the trophic promoting effects of molecules exo-
genously administered, the expression of endogenous
neurotrophic factors following other types of nerve
manipulation gives further evidences of the role of speci-
fic molecules for motoneuron survival and regeneration.
Treatment of Bell’s palsy is still a matter of contro-

versy and there is a consensus for the need of larger
and properly designed clinical trials to evaluate the
effects of antiviral drugs, glucocorticoids and other pro-
posed therapies for disease. It has been said that steroids
e.g. prednisolone may reduce the nerve swelling-induced
damage, leading to a potential recovery in early treat-
ments [3,78].
In fact, the role of hormones in peripheral neuro-

pathology is unknown. It has gained evidence the
actions of steroid hormones on nervous system troph-
ism [79] and plasticity [80-82], effects that are probably
related to their ability to regulate the expression of neu-
rotrophic factors [70,83-87].
We have shown in this study that systemic corticos-

terone for 7 days led to upregulation of FGF-2 immu-
noreactivity mainly in astrocytes of rat facial nucleus.
The present findings are in line with our previous obser-
vations that adrenocortical steroid administration can
increase FGF-2 mainly in the glial cells of the rat sub-
stantia nigra [9]. Moreover, dexamethasone, a potent
synthetic glucocorticoid agonist, was shown to induce
the FGF-2 gene expression in primary culture of rat
astrocytes from different CNS regions [86], and also to
increase FGF-2 immunoreactivity in the substantia nigra
astrocytes [88], further emphasizing the influence of
steroid hormones on astroglial FGF-2 mechanisms.
It may be possible that glucocorticoid hormones also

modulate astroglial FGF-2 syntheses in the axotomized
facial nucleus, as we have described in the model of
experimental parkinsonism [32,70], however that was
not the matter of the present investigation on non axo-
tomized facial nucleus. Moreover, glucocorticoids might
also be able to modulate FGF-2 expression in the neuro-
nal fiber surrounding Schwann cells, which may be
potentially involved in sprouting and outgrowth of
lesioned axons [18]. Nevertheless, based on the glio-
genic, angiogenic and fibroblastogenic actions of FGF-2
and consequently its potential actions on wound repair,
glucocorticoid hormones may use FGF-2 signaling on its
neurorepair role which is also positive for axonal regen-
eration [60,89]. We are presently performing experi-
ments on axotomized facial nerve to evaluate further
this issue.
Physiotherapy might also contribute to rehabilitation of

Bell’s palsy. Rather largely employed, the efficacy of acu-
puncture remains unknown because the available studies
do not allow adequate conclusions. Furthermore, neuro-
nal stimulation in general and electrical stimulation in

particular seem to improve motor recovery in patients
with Bell’s palsy [90,91].
Hadlock and co-workers investigated the effects of a

local brief electrical stimulation (1 h, 3 V, 20 Hz square
wave), a mechanical (manual) target muscle manipulation,
or both on functional recovery (whisker movement) of
transected and repaired facial nerve of rats [92]. Either
therapy alone led to long last better effects than that of
untreated rats or animals submitted to an association of
the two methods. It seems likely that neuronal activation
by afferent inputs triggered by manual stimulation
approaches is involved in the functional recovery of the
denervated muscles since it is effective in cases of cranial
nerve lesions with preservation of the sensory fibers (facial
or hypoglossal nerve) but ineffective for the treatment of
injury of peripheral nerve containing both sensory and
motor fibers [93]. Indeed, manual stimulation was shown
to improve function and to reduce polyinnervation with-
out triggering collateral sprouting compared to acute elec-
trical nerve stimulation prior to reconstructive surgery
after facial nerve injury in rats [94]. These findings are in
line with a recent report that showed failure of whisker
functional recovery and collateral axonal branching, and
also a reduced motor endplate reinervation after facial
nerve repair (end-to-end suture) treated by electrical
stimulation in rats [95]. Finally, the nature of electrical sti-
muli must be consider regarding a potential damage to the
nerve tissue as described recently by Sapmaz and co-
workers [96] after strong and numerous electrical stimuli
to the rat facial nerve ranging from 1 to 5 mA.
All in all, the above considerations seem to be in line

with our results regarding the increases of FGF-2 in the
facial nuclei of rats submitted to a functional electrical
stimulation applied in a facial muscle after local implan-
tation of an electrode.
To our knowledge, functional electrical stimulation

has not been applied in rodents, despite some reports
have evaluated its efficacy for neurofunctional restora-
tion after facial nerve lesions in rabbits [97-99]. We can
not exclude the possibility of retrograde signals may
have triggered the increases of FGF-2 in the neuronal
cells of facial nucleus after the functional electrical sti-
mulation performed in our works, however it seems
possible that proprioceptive reflexes might have exerted
an important role in that process.
We should emphasize that based on the results pre-

sented in this report, the functional electrical stimula-
tion led to elevation of FGF-2 mainly in the cytoplasm
of neurons of facial nucleus, which differed to the find-
ings of systemic corticosterone that promoted elevation
of FGF-2 in the nuclei of astrocytes of facial nucleus.
Taken together, the present paper opened up new ave-
nues for development and further analyses of therapies
for Bell’s palsy.
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In fact, one possibility is the combination of both stra-
tegies: hormonal therapy promoting mainly paracrine
actions of glial neurotrophic factors to motoneurons
that may be necessary for an acute/subacute thophic
support and functional electrical stimulation leading
mainly neurotrophic autocrine action that may be neces-
sary for a subacute maintenance.
In line with the above described possibilities, Hetzler

and co-workers, by using the rat facial nerve crush,
showed positive effects of a combinatorial strategy of
electrical stimulation proximal to crush injury site and
testosterone propionate (TP) administration (in gona-
dectomized adult male rats) in enhancing facial nerve
regenerative properties. In their experiment, while either
single treatment modality of electrical stimulation or
exposure to supraphysiologic levels of gonadal steroids
has some benefit, such improvements are transitory
[100]. The application of both treatment modalities sig-
nificantly accelerates the functional recovery of multiple
functional parameters, with the most important being
the time until complete recovery. This significant
improvement may be attributed to the ability of each
modality to affect different aspects of cellular events
associated with axonal regeneration and also to a syner-
gism between the two types of treatment. Whether elec-
trical stimulation affects axonal sprouting in the initial
fiber outgrowth phases is a matter that remains to be
determined. Whereby electrical stimulation was able to
reduce the delay before sprout formation, hormone
accelerated the overall regeneration rate, and the com-
bined treatment led to additive effects. Furthermore, the
two treatments triggered differential temporal effects on
expression of genes related to neurotrophism and neu-
roplasticity [101] which emphasize a possible impor-
tance of associative therapies in modulating specific
molecular pathways for neurorestoration of axotomized
neurons.

Conclusion
The presence of the FGF-2 immunoreactivity in the
neurons and astrocytes of the facial nucleus indicates
that the FGF-2 may be an important growth factor for
peripheral motoneurons. Expression of astroglial/neuro-
nal FGF-2 in the facial nucleus may be correlated to
local paracrine/autocrine trophic actions to axotomized
or stimulated facial motoneurons. The FGF-2 signaling
may be explored in the search of new therapeutic target
for Bell’s palsy.
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