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Abstract

response to brachial plexus avulsion.

neuron culture and Western Blot.

the local circuits at the cortical and subcortical levels.

Backgrounds: There is considerable evidence that central nervous system is continuously modulated by activity,
behavior and skill acquisition. This study is to examine the reorganization in cortical and subcortical regions in

Methods: Adult C57BL/6 mice were divided into four groups: control, 1, 3 and 6 month of brachial plexus
avulsion. IL-1B, IL-6 and RGS4 expression in cortex, brainstem and spinal cord were detected by BiostarM-140 s
microarray and real-time PCR. RGS4 subcellular distribution and modulation were further analyzed by primary

Results: After 1, 3 and 6 months of brachial plexus avulsion, 49 (0 up, 49 down), 29 (17 up, 12 down), 13 (9 up,
4 down) genes in cerebral cortex, 40 (8 up, 32 down), 11 (7 up, 4 down), 137 (63 up, 74 down) in brainstem, 27
(14 up, 13 down), 33 (18 up, 15 down), 60 (29 up, 31 down) in spinal cord were identified. Among the regulated
gene, IL-1B and IL-6 were sustainable enhanced in brain stem, while PKACB and RGS4 were up-regulated
throughout cerebral cortex, brainstem and spinal cord in 3 and 6 month of nerve injury. Intriguingly, subcellular
distribution of RGS4 in above three regions was dependent on the functional correlation of PKA and IL-1B.

Conclusion: Data herein indicated that brachial plexus avulsion could efficiently initiate and perpetuate the brain
reorganization. Network involved IL-1B and RGS4 signaling might implicate in the re-establish and strengthening of

Backgrounds

Neuroplasticity is the changing of neurons and the organi-
zation of their networks, which may happen through add-
ing new cells or changing of the strength of the
connections between neurons. For years it was believed
that peripheral injuries could trigger a series of phenotypic
changes [1,2], such as neuronal reaction and chromatoly-
sis, even functional plasticity and brain reorganization
[3,4]. It was also reported that these alterations of neural
substrates occurred with time dependent manner. Namely,
rapid changes within minutes are likely due to unmasking
of latent synapses, while the changes over a longer time
are involve many mechanisms including long-term poten-
tiation, axonal regeneration and sprouting [5,6].
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Brachial plexus is formed by the union of the ventral
primary rami of the spinal nerve, C5-C8 and T1 [7],
which is a complex network of nerves which extends
from the neck to the axilla and supplies motor, sensory,
and sympathetic fibers to the upper extremity. Accord-
ingly, brachial plexus avulsion usually results in a con-
stant crushing and intermittent shooting pain, even the
arm paralysis [8,9]. Recently, brain reorganization was
reported to be induced by brachial plexus avulsion.

As well known, cells must integrate the signals that
they receive from multiple pathways in order to respond
efficiently to environmental cues. But, what happened
with regard to brachial plexus avulsion? Up to now,
many studies documented that peripheral nerve injury is
tightly controlled by cytokines, G-protein coupled recep-
tor pathways [10]. IL-1B and IL-6 in particular, they are
not only implicated in the central inflammatory
response in glial cells, but also in neuron actions, such
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as rapid changes in membrane ion currents, activation
of neuron-specific CREB and the sphingomyelinase/cere-
mide pathways [11]. Importantly, these cytokines may
eventually evolve into local circuitry and complex loops
between cortical and subcortical locations [12].

For G-protein signaling, the emerging picture of
G protein signaling (RGS) proteins reveals a highly
diverse, multifunctional signaling network, which could
permit fine-tuning of its interaction with cytokines
[13-15]. This interaction presents the intriguing possibi-
lity to regulate signal capacity involving peripheral nerve
injury. Accordingly, the present study was determined
to examine brachial plexus avulsion induced specific
gene expression, as well as the orchestrated G-protein
signaling network in the CNS.

Methods

Animal preparation

All animal experiments were carried out in accordance
with the guidelines and regulations for animal experi-
mentation, NIH and Fudan University. Adult C57BL/6
mice weighing 18-20 g were used in the current experi-
ment (Scientific Animal Center in Shanghai Medical
College, Fudan University). The animals were housed in
groups (5 per cage) in a controlled environment on a
12 h light-dark cycle, and allowed to acclimate for a
minimum of 5 days before conducting experiments.
Water and food were available at all times.

Brachial plexus nerve root avulsion was performed
based on established methodologies [3]. Briefly, mouse
was anesthetized by i.p. injection of sodium pentobarbi-
tal (40-50 mg/kg, Shanghai reagent company, Shanghai,
China), then was put in prostate position. Incision was
made from the occiput to the scapular angulus superior
with 4 cm in length. When the muscles were drawn to
one side, spinal cord was gently pulled to the left side,
the left radix dorsails and radix ventralis from C5 to T1
were exposed and the nerve roots were avulsed from
spinal cord. Animal’s body temperature was maintained
at 37°C throughout the experiment, no post-operation
infection occurred. 1, 3 and 6 months later, animals
were scarified by decapitation, and brain tissue were
removed and stored rapidly.

BiostarM-140 s microarray

For mRNA isolation, cortex, brainstem and spinal cord
were dissected and pooled from five animals in each
group, which was to decrease differences attributable to
individual variability and increase the statistically power
of these experiments. Tissue were mechanically homo-
genized, mRNA was extracted by UNIzol reagent. After
that, mRNA was treated with RNase-free DNase I
(Takara, Japan). BiostarM-140 s microarray was per-
formed, which contains probe sets for detection of
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14,000 transcripts. The mRNA was labeled in a reverse
transcription reaction in the presence of Cy3-dCTP and
Cy5-dCTP. The hybridization signals were scanned with
ScanArray 4000, each set of gene expression (operation/
control) was expressed as ratio of Cy3 to Cy5. Data pro-
cessing was performed on GenePix Pro 3.0. All arrays
were normalized together as one experiment to reduce
non-biological variability.

Real time PCR

Cerebral cortex, brainstem and spinal cord were dis-
sected (50 mg, n = 5), mRNA was extracted by UNIzol
reagent and treated with RNase-free DNase I (Takara,
Japan). Reverse transcription using random hexamers
was performed with Omniscript reverse transcriptase
(QIAGEN). Briefly, 20-ul reactions contained DNase-
treated RNA, deoxynucleoside triphosphate mix, 1 uM
random hexamer primer, 1 U of RNase inhibitor
(Ambion), and Omniscript reverse transcriptase. Reac-
tions incubated at 37°C for 1 h, followed by 93°C inacti-
vation for 5 min.

Real time PCR analysis was performed with SYBR
Green I (Takara, Japan). Briefly, 50 pl reactions con-
tained ¢cDNA; 0.5 uM of primers specific for IL-1f
(sense: 5’-CTCCATGAGCTTTGTACAAGG-3’; anti-
sense: 5-TGCTGATGTACCAGTTGGGG-3’), IL-6
(sense: 5-CTCTCCGCAAGAGACTTCCA-3’; antisense:
5-TGGTCTTCTGGAGTTCCGTT-3’), RGS4 (sense: 5'-
CCGGCTTCTTGCTTGAGGAGTG-3’; antisense: 5'-
ATCCAGGTTCACATTCATGACT-3), PKACP (sense:
5-AGAAAGCAGGCACTCGTACA-3’; antisense: 5'-
AAAGGAGACCGAAAACATGG-3); 25 pl PCR master
mix. PCR was performed in ABI PRISM 7900HI
(Applied Biosystems) as follows: 50°C for 2 min and 95°
C for 10 min, followed by 40 cycles of 95°C for 15 sec
and 60°C for 1 min. Endogenous control (GAPDH) was
used for each sample in the same plate, minimizing any
effect of plate-to-plate variability. Gene expression was
quantified with the 2-AACt method, which computed
the percentage change relative to control.

ELISA analysis of IL-1f and IL-6 production

IL-1B and IL-6 production in brainstem (50 mg) were
assessed by sandwich ELISA according to the manufac-
turer’s instructions (R&D Systems). A 96-well plate was
coated with 2 pg/ml monoclonal anti-mouse IL-1B or
IL-6 at 4°C overnight and then blocked with 1% BSA in
PBS for 1 h. The plates were washed three times with
PBS containing 0.2% Tween 20 (PBST). Aliquots of tis-
sue lysate was diluted to 100 pl with HBSS, added to
the plates, and incubated for 2 h at room temperature.
The plates were washed three times with PBS, 100 pl
aliquots of 0.1 pg/ml biotinylated mouse IL-1p or IL-6
affinity-purified polyclonal detection antibody were
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added and incubated for 2 h. After further three washes
with PBST, the immune complexes were colorimetrically
detected using HRP-streptavidin conjugate. The reaction
was stopped byl M H,SO4. The absorbance at 450 nm in
each well was measured by microplate reader (BioRad).
Experiments were independently performed three times
and the data are represented as the mean + SEM.

Preparation of plasma membrane and non-membrane
fraction

Cerebral cortex, brainstem and spinal cord from each
group of mice, or neurons (1 x 10°) undergone respective
treatment were homogenized in 3-4 volumes (w/v)
of homogenization buffer (0.32 M sucrose, 2 mM
Na-EGTA, 1 mM NaNs3, 5 pg/ml leupeptin, 5 pg/ml pep-
statin A, 200 pg/ml phenylmethylsulfonyl fluoride, and
0.01% (v/v) DFP, pH 7.5) and centrifuged at 900 g for
10 min. The supernatant (S1) was pelleted for 1 h at
30,000 g, then was washed with phosphate/EGTA buffer
(10 mM sodium phosphate, 2 mM Na-EGTA, 1 mM
NaN3, 0.5 mM DTT, 50 pg/ml phenylmethylsulfonyl
fluoride, pH 7.5) and resuspended at a final membrane
protein concentration of 3-4 mg/ml, which was used as
membrane fraction. S1 was collected and total protein
was precipitated by 5% Trichloroacetic acid (TCA),
which was used as non-membrane fraction. RGS4 expres-
sion in each fraction was analyzed by Western Blot.

Primary neuron culture

Brainstem neurons were from embryonic day 18 C57BL/6
mice. Fetuses were decapitated and collected under sterile
conditions. After removing meninges, neurons were disso-
ciated in 0.05% trypsin at 37°C, then washed in DMEM
and gently suspended in neuron-defined serum-free Neu-
robasal medium supplemented with B27. By flow cytome-
try, neurons were account for 95% of cultures.

Detergent-free preparation of lipid rafts

The isolation of lipid rafts in the current study was
adapted from Lisanti’s lab [16,17]. Neurons were scraped
into 2 ml of 500 mM sodium carbonate, PH11.0. Homo-
genization was carried out sequentially in the following
order using a loose-fitting Dounce homogenizer (10
strokes), three 10-sec bursts of a Polytron tissue grinder
(Brinkmann Instruments, Inc., Westbury, NY) at setting
6, followed by one 30-sec burst at setting 4 and one
30-sec burst at setting 8 of a sonicator equipped with a
micro-probe (Heat systems-Ultrasonics, Inc., Plainview,
NY). The homogenate was then adjusted to 45% sucrose
by the addition of 2 ml of 90% sucrose prepared in MBS
at pH 6.8 and placed at the bottom of an ultracentrifuge
tube. The lysate was then overlaid with 4 ml of 35%
sucrose and 4 ml of 5% sucrose, both prepared in MBS
containing 250 mM sodium carbonate at pH 11. The
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discontinuous gradient was centrifuged at 39,000 rpm
for 16-20 hr in a SW41 rotor. A light-scattering band to
the 5-35% and 35-45% sucrose interface was collected
and the total proteins were separated and analyzed by
Western Blot.

Western blotting

Proteins were resolved in SDS-PAGE gel, then trans-
ferred to a polyvinylidene difluoride membrane
(GE Healthcare, Little Chalfont, Buckinghamshire, UK).
The membrane was blocked in a blocking solution con-
taining 10% non-fat milk and 1% Tween 20 in Tris-buf-
fered saline, and probed with RGS4 (1:1000), PKACp
(1:1000) respectively. Protein band was detected by alka-
line phosphatase conjugated secondary antibody
(1:5000) and ECF substrate, and scanned in the Storm
860 Imaging System (GE Healthcare). Band intensities
were quantified and analyzed with ImageQuant software
(GE Healthcare).

Statistical analysis

Gene ontology, as well as the information about specific
genes of interest was obtained from Pubmed. Intensity
ratio of cy3 to cy5 was presented for one gene, that was
more than 2.0 or less than 0.5 was considered to show
prominent differential expression. Results from ELISA,
real time PCR and Western Blot were presented as
means + SEM of three experiments. Statistical signifi-
cance was determined using one-way ANOVA.

Results

Regulated genes in cortex, brainstem and spinal cord
The first step in this study was to screen genes that are
regulated by brachial plexus avulsion, the comparison of
genes allowed us to narrow down the candidates possi-
bly involved in this process. In cerebral cortex, signifi-
cant upregulation of 0, 17 and 9 transcripts and
downregulation of 49, 12 and 4 transcripts were exhib-
ited after 1, 3 and 6 months of brachial plexus avulsion
(Additional file 1). When putting the regulated genes
into a functional context, we found that several key
genes involved in signal transduction. For example,
genes encoding casine kinase, potassium voltage-gated
channel and heat shock protein were up-regulated in
3 month. Besides that, clusters of genes involved in cell
signaling, cell structure, stress and immune responses,
such as genes encoding for protein C receptor, angioten-
sin, plastaglandin E, microtubule associated protein 1B,
tubulin, PKACP and RGS4 were induced by brachial
plexus avulsion.

In brainstem, there were 40 (8 up, 32 down), 11 (7 up,
4 down), 137 (63 up, 74 down) transcripts were signifi-
cantly regulated inl, 3 and 6 months of brachial plexus
avulsion (Additional file 2). PKACB and RGS4 are
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among the upregulated genes. Other regulated genes are
several involved in immune reaction and signal trans-
duction, including microtubule associated protein 1B,
tubulin, and tyrosine ligase, cytochrome P450, thymo-
poietin, PDZ domain, novel nuclear protein, immuno-
globulin family, major histocompatibility complex,
angiotensin 2, dual-specificity tyrosine kinae, G-protein
coupled receptor 56, FK506 binding protein, N-ras pro-
tein, phospholipids D, cytoskeleton associated protein,
dynactin, forming binding protein, serine peptidase inhi-
bitor, tenascin, low density lipoprotein receptor, TRIP-
Brl, glia maturation factor, peroxisome proliferators
activated receptor.

In spinal cord, we found an upregulation of 14, 18 and
29 transcripts and downregulation of 13, 15 and 31
transcripts in 1, 3 and 6 month of brachial plexus avul-
sion (Additional file 3). Several regulated genes were
related to synaptic function, such as synaptotagmin,
synaptobrevin and protein tyrosine phosphatase. Some
were associated with cell metabolism, such as gluta-
mate-cycteine ligase. PKACP and RGS4 were the
remarkable upregulated genes.

IL-18 and IL-6 production in the central nervous system
by brachial plexus avulsion

Constitutive expression of IL-1f and IL-6 in brain is
quite low in basal condition [18]. Based on cDNA
microarray data, they could be induced by brachial
plexus avulsion with region specific manner. To deter-
mine whether this differential regulation occurs only in
brainstem, quantification by means of real-time PCR
and ELISA assay were performed. We observed a signifi-
cant up-regulation of IL-1f and IL-6 mRNA expression
in brainstem, they were 4.37 + 0.56 and 4.06 + 0.49,
3.97 + 1.38 and 3.51 + 1.54, 3.89 + 0.32 and 3.50 + 1.46
folds of control in 1, 3 and 6 month of operation
respectively (Figure 1A). But no changes displayed in
cortex and spinal cord (data not shown). IL-1p and IL-6
protein content in brainstem were also elevated (4.57 +
1.51 and 3.77 + 1.35, 4.10 + 1.44 and 3.52 + 1.54, 4.07 +
1.51 and 3.49 + 1.43 folds of control), which clearly
matched with their mRNA level (Figure 1B).

Confirmation of PKACB and RGS4 gene expression by
real-time PCR

The findings by cDNA microarray highlight the com-
plexity in gene expression changes that triggered by bra-
chial plexus avulsion. To validate the genes which are
potentially associated with IL-1p signaling, we focused
on the genes encoding RGS4 and PKACB on account of
their overall regulation in cortex, brainstem and spinal
cord (Table 1). As illustrated in Figure 2, RGS4 and
PKACB mRNA expression in cerebral cortex was 1.02 +
0.17 and 0.97 + 0.21, 2.77 + 0.34 and 2.97 + 048, 2.59 +
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0.39 and 3.12 + 1.13 folds of control in 1, 3 and
6 month of operation respectively. In brainstem, they
were 0.99 + 0.21 and 1.03 + 0.28, 2.97 + 0.39 and 3.02 +
1.04, 3.12 + 1.21 and 2.80 + 1.13 folds of control. In
spinal cord, they were 0.99 + 0.21 and 0.97 + 0.20, 2.79
+ 0.34 and 3.13 + 1.10, 2.92 + 0.21 and 3.09 + 1.07
folds of control respectively. The results are correlated
very well with the data obtained from microarray
analysis.

Modulation of RGS4 membrane distribution by brachial
plexus avulsion

Since the regulation of RGS4 was dependent on its
phosphorylation and subcelllular distribution [19], we
determined to examine RGS4 expression profiles when
challenged with brachial plexus avulsion. As shown in
Figure 3, membrane distribution of RGS4 in cerebral
cortex and spinal cord began to increase in 3 and
6 month of nerve injury. The relative densities to con-
trol were 0.97 + 0.23, 2.77 + 0.35, 2.92 + 0.21 folds of
control in cortex, 1.03 + 0.22, 2.98 + 1.08, 2.83 + 1.09
folds of control in spinal cord in 1, 3 and 6 month of
nerve injury respectively. However, in brainstem, ele-
vated RGS4 was mainly concentrated in non-membrane
fraction, the relative densities to control were 1.05 *
0.23, 3.03 = 0.52, 2.90 = 0.38 folds of control in the
three time points.

Modulation of RGS4 membrane distribution in cultured
neuron

Whether IL-18 or PKACP controlled RGS4 subcellular
distribution? As displayed in Figure 4, RGS4 was loca-
lized within non-membrane fraction in cultured neurons
in basal condition. Administration of cAMP analogue
dibutyryl-cAMP (dbcAMP, 0.25 mM, 24 h) resulted in
RGS4 translocated into membrane fraction, the relative
density to vehicle treatment was 2.93 + 0.37 folds of
control. In contrast, PKA inhibitor, KT5720 (9-n-hexyl
derivative of K-252a, 10 uM, 30 min) exposure attenu-
ated RGS4 membrane distribution, the relative density
was 1.02 + 0.30 folds of control. Similar observation was
also obtained on the neurons collected from cortex and
spinal cord (data not shown).

However, what the mechanism underlying the role of
IL-1B on the RGS4 membrane distribution? Figure 4
illustrated that relative density of RGS4 in membrane
fraction was attenuated when exposed to IL-18 (20 ng/
ml, 24 h) (0.51 + 0.11 folds of control). IL-1 receptor
antagonist (IL-1ra, 10 ng/ml, 24 h) showed significant
inversely effect, the relative density of RGS4 was ele-
vated to 2.76 + 0.38 folds of control. Discontinuous
sucrose density centrifugation is designed to specifi-
cally quantify the PKACP distribution within lipid
rafts. Notably, IL-1B treatment leads to the decreased
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MRNA expression,
folds of control

IL-1p

Cytokine production,
folds of control

IL-1B

SEM. p < 0.05 *vs control.

Figure 1 Kinetic changes in IL-1f and IL-6 expression in brainstem after brachial plexus avulsion. Mice were divided into 4 groups,
control, 1, 3 and 6 month of brachial plexus avulsion (n = 5). IL-18 and IL-6 mMRNA expression (A) and protein content (B) in brainstem were
evaluated by real time PCR and ELISA assay respectively. The results were normalized against un-operated mouse, data are expressed as mean +

IL-6

IL-6

PKACP expression in lipid raft microdomain, relative
density was 0.52 + 0.14 folds of % control. IL-1ra
could reverse the effect of IL-1B, PKACP lipid rafts
distribution was restored (0.92 + 0.24 folds of control).
Also, IL-6 content in neuron is efficiently controlled
by IL-1P.

Discussion

Previous study have implicated that peripheral nerve
injury induced reorganization is not equally distributed
across the neuroaxis. The acute effects of nerve injury
appear to be much more pronounced in the brainstem
than in cortex [20], while the more protracted phase of
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Table 1 Genes with confirmed up- or down-regulation
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1 month 3 month 6 month

Regulated in the motor cortex

regulator of G-protein signaling 4 (NM_009062) 1 1
protein kinase, CAMP dependent regulatory (NM_008923) 1 1
Regulated in the brain stem

IL-1 protein (AJ250429) 1 T
interleukin 6 signal transducer (BC058679) i 1
regulator of G-protein signaling 4 (NM_009062) i T
Regulated in the spinal cord

regulator of G-protein signaling 4 (NM_009062) 1 T
protein kinase, CAMP dependent regulatory (NM_008923) i T

Mice were divided into 4 groups, control, 1, 3 and 6 month of brachial plexus avulsion (n = 5). Cerebral cortex, brainstem and spinal cord were dissected (50 mg,
n = 5), mRNA was extracted and Real time PCR analysis was performed with SYBR Green I. Endogenous control (GAPDH) was used for each sample in the same
plate, minimizing any effect of plate-to-plate variability. Gene expression was quantified with the 2—-AACt method, which computed the percentage change

relative to control.

effects appears to result from differing extents of sec-
ondary functional changes, as well as the more dynamic
interactive processes in cortex [21,22]. Thus, it will be
interesting to validate the putative targets, by which
fine-tuned a spatio-temporal reorganization following
brachial plexus avulsion.

In this study, application of microarray analyses, we
found that 49 (0 up, 49 down), 29 (17 up, 12 down), 13
(9 up, 4 down) genes in cortex were changed in 1,3 and
6 months of brachial plexus avulsion. In brainstem, 40
(8 up, 32 down), 11 (7 up, 4 down), 137 (63 up, 74
down) genes were identified. Some of these genes are
involved in axonal transport, which would be expected
to closely link to the actin projection cut down [23,24].
Moreover, the alteration pointed to the hypothesis that
the injured environment was dominated by deafferenta-
tion induced responses, neural tissue was surrounded by
stimulated fibers and reorganized vasculature [25]. In
spinal cord, 27 (14 up, 13 down), 33 (18 up, 15 down),
60 (29 up, 31 down) genes were identified. Upregulation
of synaptotagmin, synaptobrevin and protein tyrosine
phosphatase signified the increased synaptic efficacy and
formation of new synaptic buttons of the existing pro-
jections [26,27], which might pinpoint the compensatory
mechanisms.

Notably, we found that the changes occur after brachial
plexus avulsion is relatively specific in the brainstem, IL-
1B and IL-6 displayed differential expression profile in
brainstem compared with cortex and spinal cord. Based
on the report, IL-1p and IL-6 are associated with many
brain functions [18]. For example, they have been impli-
cated in the excessive production and processing of
-amyloid precursor protein and the plaque-associated
proteins [28]; They can induce the production of various
growth and trophic factors, including fibroblast growth
factor-2 (FGF-2) [29], transforming growth factor-f
(TGE-B) [30], and nerve growth factor (NGF) [31]; They

can also stimulate inflammatory mediators, such as phos-
pholipase A2, cyclooxygenase-2 (Cox-2), prostaglandins,
nitric oxide, matrix metalloproteinases, collagenase [18],
adhesion molecule and other cytokines [32,33]. Com-
bined with our present data, it is reasonable to propose
that the orchestrated IL-1p and IL-6 expression induced
by brachial plexus avulsion are likely responsible for set-
ting up the cytokines networks.

It is even more striking that RGS4 and PKACP expres-
sion were up-regulated in 3 and 6 month of brachial
plexus avulsion, the elevation occurred overall in cortex,
brainstem and spinal cord. As well known, heterotrimeric
G proteins transduce signals from a wide range of hor-
mone and neurotransmitter receptors at the cell surface
to the intracellular environment. Following activation, G
proteins interact with well-defined effectors such as pho-
pholipase C, adenylyl cyclase, a number of ion channels
and RGS proteins [34,35]. RGS proteins is defined by a
conserved 130 amino acid RGS domain, which serve as a
GTPase activating protein (GAP) by binding to activated
Ga subunits [36,37]. Now, RGS superfamily has more
than 30 distinct mammalian proteins, RGS4 has densely
labeling in cortex, thalamus and striatum [19]. Kinase
activity could affect RGS proteins stability, their interac-
tion with Go subunits, or their cellular trafficking
[38,39]. It has also revealed that RGS phosphorylation
appears to be related to its subpopulation of intracellular
vesicles [40]. For example, when RGS2 was phosphory-
lated by PKC, GAP activity was reduced, then Gq/11 sig-
nals were enhanced [41]; RGS16 phosphorylation could
also reduce its GAP activity toward GRi/o and result in
increased adrenergic receptor signals [42], then the paral-
leled increase in RGS4 and PKA induced by brachial
plexus avulsion will be expected to unmask their full
functional potential, the orchestrated and dynamical
RGS4 subcellular distribution and modulation will be the
intriguing intracellular signal in response to brachial
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in cortex,
folds of control
N

mRNA expression

RGS4 PKACp

mRNA expression
in brainstem,
folds of control
N

folds of control
i

mRNA expression
in spinal cord,

RGS4 PKACp

Figure 2 Kinetic changes in RGS4 and PKACP expression in brainstem after brachial plexus avulsion. Mice were divided into 4 groups,
control, 1, 3 and 6 month of brachial plexus avulsion (n = 5). RGS4 and PKACB mRNA expression in cortex (A), brainstem (B) and spinal cord (C)
were assayed by real time PCR. The results were normalized against un-operated mouse, data are expressed as mean + SEM. p < 0.05 *vs
control.

plexus avulsion. Our findings support this hypothesis:  be due to their relevance. As expected, direct analyzing
RGS4 was mainly expressed in membrane fraction in cor-  using cultured neuron displayed that RGS4 membrane
tex and spinal cord, in non-membrane fraction in brain-  distribution was dependent on PKA activation.

stem. Since PKACP expression was along with RGS4, it is Several studies have documented that cAMP-CREB
speculated that RGS4 differential expression profile may  pathway is highly involved in brain inflammatory
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are expressed as mean + SEM. p < 0.05 *vs control.

1m

Figure 3 Modulation of RGS4 membrane distribution by brachial plexus avulsion. Mice were divided into 4 groups, control, 1, 3 and
6 month of brachial plexus avulsion (n = 5). Western blot analysis of RGS4 in the membrane fraction collected from cortex (A) and spinal cord
(B), in the non-membrane fraction in brainstem (C). RGS4 protein was densitometric analyzed and normalized against un-operated mouse, data

3m

processes, whose cellular responses to neurotransmit-
ters, synaptic plasticity, differentiating factors and
stressors were mainly concentrated in lipid rafts
[43-45]. IL-1B-IL-6 signaling in neuron are known to
be the upstream of cAMP and CREB [46,47]. In the
present study, IL-1B could disrupt RGS4 membrane

distribution by promoting PKA shuttle out of lipid
rafts. We therefore presumed that the alteration in
RGS4 membrane turnover in brainstem was derived
from the presence of IL-1f3. There might exist alterna-
tive RGS4 related signaling pathway in cortex, spinal
cord and brainstem.
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Figure 4 Modulation of RGS4 membrane distribution in cultured neuron. Cortical neurons were grown for 10 days, then RGS4 subcellular
distribution in the presence or absence of db cAMP, KT5720 (A); IL-1B, IL-Tra (B) was assayed by Western blotting. The localization of PKCB
within lipid rafts microdomain was assayed by discontinuous sucrose centrifugation and Western blotting (C). IL-6 content in the presence or
absence of IL-1B, IL-Tra was evaluated by ELISA assay (D). The results were normalized against vehicle treated neurons. Statistical differences

Altogether, these data support the ability of brachial
plexus avulsion on the brain reorganization. After nerve
injury, coordinated tissue remodeling and amplified the
mounting cellular response in cortex, brainstem and
spinal cord was efficiently initiated and perpetuated.
IL-1B-IL-6 signaling in brainstem in the early stage
(1 month) appears to enhance the perceptions of com-
pensatory modalities, and may serve to reinforcement of
feedback activity in response to nerve injury. In the later
stage (3 and 6 month), it may triggered differed G-
protein signal events within CNS, which might conse-
quently function to re-establish or strengthening of the
local circuits at cortical and subcortical levels.

Conclusion
The present study showed that brachial plexus avulsion
lead to both specific as well as more global changes in

gene expression in cortex, brainstem and spinal cord.
The regulated genes at acute or longer times display
interesting similarities or differences among the three
brain regions, which may contribute to the different
aspects of brain responses to brachial plexus avulsion.
For example, IL-1B and IL-6 expression were upregu-
lated only in brainstem, while RGS4 and PKACP expres-
sion could be induced overall in cortex, brainstem and
spinal cord. Importantly, RGS4 displayed differential dis-
tribution, namely, in membrane fraction in cortex and
spinal cord, while in non-membrane fraction in brain-
stem. This subcellular distribution was dependent on
the functional correlation between IL-13 and PKACS.
Thereby, we assumed that temporal and spatial IL-1B3-
IL-6 signaling in brain might function to re-establish or
strengthening of the local circuits at cortical and subcor-
tical levels.
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Additional material

Additional file 1: Functional classification of the annotated genes
that show differentiated expressions in the motor cortex following
brachial plexus axotomy. Intensity ratio of cy3 to cy5 was presented
for one gene, that was more than 2.0 or less than 0.5 was considered to
show prominent up- or down-regulated expression.

Additional file 2: Functional classification of the annotated genes
that show differentiated expressions in the brain stem following
brachial plexus axotomy. Intensity ratio of cy3 to cy5 was presented
for one gene, that was more than 2.0 or less than 0.5 was considered to
show prominent up- or down-regulated expression.

Additional file 3: Functional classification of the annotated genes
that show differentiated expressions in the spinal cord following
brachial plexus axotomy. Intensity ratio of cy3 to cy5 was presented
for one gene, that was more than 2.0 or less than 0.5 was considered to
show prominent up- or down-regulated expression.
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